New “Einstein Cross” Gravitational Lens Candidates in [ITAL]Hubble Space Telescope[/ITAL] WFPC2 Survey Images

Abstract
We report the serendipitous discovery of "Einstein cross" gravitational lens candidates using the Hubble Space Telescope (HST). We have so far discovered two good examples of such lenses, each in the form of four faint blue images located in a symmetric configuration around a red elliptical galaxy. The high resolution of HST has facilitated the discovery of this optically selected sample of faint lenses with small (~1'') separations between the (I ~ 25-27) lensed components and the much brighter (I ~ 19-22) lensing galaxies. The sample has been discovered in the routine processing of HST fields through the Medium Deep Survey pipeline, which fits simple galaxy models to broadband filter images of all objects detected in random survey fields using WFPC2. We show that the lens configuration can be modeled using the gravitational field potential of a singular isothermal ellipsoidal mass distribution. With this model the lensing potential is very similar, both in ellipticity and orientation, to the observed light distribution of the elliptical galaxy, as would occur when stars are a tracer population. The model parameters and associated errors have been derived by two-dimensional analysis of the observed images. The maximum likelihood procedure iteratively converges simultaneously on the model for the lensing elliptical galaxy and the source of the lensed components. A systematic search is in progress for other gravitational lens candidates in the HST Medium Deep Survey. This should eventually lead to a good statistical estimate for lensing probabilities and enable us to probe the cosmological parameters.
All Related Versions