Non-random dispersal in the butterfly Maniola jurtina : implications for metapopulation models

Abstract
The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non–habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non–random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non–familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations.