Improvement of ASTER/SWIR crosstalk correction
- 2 February 2004
- proceedings article
- Published by SPIE-Intl Soc Optical Eng
- Vol. 5234, 168-179
- https://doi.org/10.1117/12.511811
Abstract
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), one of five sensors on Terra, has bands 4 to 9 in the short-wave infrared (SWIR) region. These bands, particularly bands 5 and 9, are affected by band-to-band crosstalk. A crosstalk correction algorithm already developed is practically used for reducing a leaked ghost image, but does not satisfactorily work for all scenes. We therefore analyze crosstalk effects in more detail for improving this algorithm. As the results, it is shown that crosstalk includes several band-to-band/intra-band components, and the cause of each component is estimated to be reflection, scattering, and/or refraction in a CCD chip and/or interference filters. Based on these facts, a new crosstalk correction algorithm is developed by improving the original algorithm. In the new algorithm, all known crosstalk components are included, kernel functions for convolution with a source image are updated, and sensitivity correction applied for keeping consistency with radiometric calibration is improved. Comparison results indicate that the new algorithm reduces ghost images more correctly than the original algorithm.This publication has 0 references indexed in Scilit: