Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
- 1 January 1997
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 55 (2) , 1142-1161
- https://doi.org/10.1103/physrevb.55.1142
Abstract
Normal-conducting mesoscopic systems in contact with a superconductor are classified by the symmetry operations of time reversal and rotation of the electron's spin. Four symmetry classes are identified, which correspond to Cartan's symmetric spaces of type C, CI, D, and DIII. A detailed study is made of the systems where the phase shift due to Andreev reflection averages to zero along a typical semiclassical single-electron trajectory. Such systems are particularly interesting because they do not have a genuine excitation gap but support quasiparticle states close to the chemical potential. Disorder or dynamically generated chaos mixes the states and produces forms of universal level statistics different from Wigner-Dyson. For two of the four universality classes, the n-level correlation functions are calculated by the mapping on a free one-dimensional Fermi gas with a boundary. The remaining two classes are related to the Laguerre orthogonal and symplectic random-matrix ensembles. For a quantum dot with a normal-metal–superconducting geometry, the weak-localization correction to the conductance is calculated as a function of sticking probability and two perturbations breaking time-reversal symmetry and spin-rotation invariance. The universal conductance fluctuations are computed from a maximum-entropy S-matrix ensemble. They are larger by a factor of 2 than what is naively expected from the analogy with normal-conducting systems. This enhancement is explained by the doubling of the number of slow modes: owing to the coupling of particles and holes by the proximity to the superconductor, every cooperon and diffusion mode in the advanced-retarded channel entails a corresponding mode in the advanced-advanced (or retarded-retarded) channel.Keywords
All Related Versions
This publication has 32 references indexed in Scilit:
- Random Matrix Theory of a Chaotic Andreev Quantum DotPhysical Review Letters, 1996
- Phase Controlled Conductance of Mesoscopic Structures with Superconducting “Mirrors”Physical Review Letters, 1995
- Spectrum of the QCD Dirac operator and chiral random matrix theoryPhysical Review Letters, 1994
- Anderson localization for sublattice modelsNuclear Physics B, 1993
- New random matrix theory of scattering in mesoscopic systemsPhysical Review Letters, 1993
- Anderson localization problems in gapless superconducting phasesPhysica A: Statistical Mechanics and its Applications, 1990
- Supersymmetry and theory of disordered metalsAdvances in Physics, 1983
- Nonunitary bogoliubov transformations and extension of Wick’s theoremIl Nuovo Cimento B (1971-1996), 1969
- Statistical Theory of the Energy Levels of Complex Systems. IJournal of Mathematical Physics, 1962
- On the statistical distribution of the widths and spacings of nuclear resonance levelsMathematical Proceedings of the Cambridge Philosophical Society, 1951