Abstract
We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range $T_0=10^4-10^{7.6}$K and shock Mach numbers spanning $M_s=2.4-133$. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies ($p/mc \gsim 1$), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies $\sim 50$%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks ($M_s \sim {\rm a few}$). (abridged)

This publication has 0 references indexed in Scilit: