Perspective: PTH/PTHrP Activity and the Programming of Skeletal Development In Utero
- 1 February 2004
- journal article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 19 (2) , 177-182
- https://doi.org/10.1359/jbmr.0301235
Abstract
There is increasing evidence that nutritional deficiency in utero adversely affects bone development and the risk of developing osteoporosis in later life. Although the mechanisms involved are unknown, circumstantial evidence points to an important role of PTH/PTHrP activity. It is recognized that PTH and PTHrP are critically involved in regulating fetal calcium homeostasis, actions that are mediated at least in part by PPR. As well as playing a central role in the maintenance of calcium homeostasis in the fetus, studies in transgenic mice show that PTH, PTHrP, and PPR exert similar effects on skeletal development in utero, acting to increase the size of the trabecular envelope and decrease that of the cortical envelopes. Taken together, these observations raise the possibility that stimulation of PTH/PTHrP activity in the fetus in response to calcium deficiency acts to increase the size of the trabecular envelope but to reduce that of the cortical envelope. Although any increase in trabecular bone at birth is likely to be relatively transient, a decrease in size of the cortical envelope may have a persistent effect on the trajectory of bone growth in subsequent childhood. Consistent with this proposal, preliminary findings from birth cohort studies suggest that maternal calcium intake and cord blood calcium levels are positively related to bone mass of the offspring as assessed later in childhood. Further studies are justified to determine whether alterations in fetal PTH/ PTHrP activity caused by calcium stress lead to a reduction in size of the cortical envelope at birth that persists into childhood and later adult life and to identify modifiable maternal factors that are responsible for these changesKeywords
This publication has 30 references indexed in Scilit:
- Developmental regulation of the growth plateNature, 2003
- Neonatal Bone Mass: Influence of Parental Birthweight, Maternal Smoking, Body Composition, and Activity During PregnancyJournal of Bone and Mineral Research, 2001
- Activated parathyroid hormone/parathyroid hormone–related protein receptor in osteoblastic cells differentially affects cortical and trabecular boneJournal of Clinical Investigation, 2001
- ALSPAC–The Avon Longitudinal Study of Parents and ChildrenPaediatric and Perinatal Epidemiology, 2001
- Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone developmentJournal of Clinical Investigation, 1999
- Growth in infancy and bone mass in later lifeAnnals of the Rheumatic Diseases, 1997
- PTH/PTHrP Receptor in Early Development and Indian Hedgehog—Regulated Bone GrowthScience, 1996
- Childhood growth, physical activity, and peak bone mass in womenJournal of Bone and Mineral Research, 1995
- A Constitutively Active Mutant PTH-PTHrP Receptor in Jansen-Type Metaphyseal ChondrodysplasiaScience, 1995
- Evidence for a novel parathyroid hormone-related protein in fetal lamb parathyroid glands and sheep placenta: comparisons with a similar protein implicated in humoral hypercalcaemia of malignancyJournal of Endocrinology, 1988