Computation, Continuation and Bifurcation Analysis of Periodic Solutions of Delay Differential Equations

Abstract
We present a new numerical method for the efficient computation of periodic solutions of nonlinear systems of Delay Differential Equations (DDEs) with several discrete delays. This method exploits the typical spectral properties of the monodromy matrix of a DDE and allows effective computation of the dominant Floquet multipliers to determine the stability of a periodic solution. We show that the method is particularly suited to trace a branch of periodic solutions using continuation and can be used to locate bifurcation points with good accuracy.

This publication has 12 references indexed in Scilit: