Establishment of acellular extrinsic fiber cementum on human teeth

Abstract
The present study describes for the first time the development of early acellular extrinsic fiber cementum (AEFC) until its establishment on human teeth. Precisely selected premolars with roots developed to 50%–100% of their final length were prefixed in Karnovsky's fixative and most of them were decalcified in EDTA. Their roots were subdivided into about 10 blocks each, cut from the mesial and distal root surfaces. Following osmication, these blocks were embedded in Epon and sectioned for light-and transmission electron microscopy. Some blocks were cut non-demineralized. From semithin stained sections, the density of the collagenous fiber fringe protruding from the root surface was measured by using the Videoplan-system. After initiation of this fiber fringe and its attachment to the dentinal root surface followed by mineralization, the fringe gradually increased in length and subsequently became mineralized. Fringe elongation and the advancement of the mineralization front appeared to progress proportionally. Thus, in all stages of AEFC development, a short fiber fringe covered the mineralized AEFC. Its density remained constant, irrespective of AEFC thickness. The latter gradually increased and reached an early maximum of 15–20 μm in the cervical region. At this stage, the AEFC fringe appeared to fuse with the future dentogingival or other collagen fibers of the tooth supporting apparatus. Mineralization of the fringe commenced with isolated, spherical or globular centers, which later fused with the mineralization front and became incorporated in AEFC.