Covalent structure of botulinum neurotoxin type A: Location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains
- 1 January 1994
- journal article
- research article
- Published by Springer Nature in Protein Journal
- Vol. 13 (1) , 49-57
- https://doi.org/10.1007/bf01891992
Abstract
Botulinum neurotoxin Type A is synthesized byClostridium botulinum as a ∼150 kD single chain polypeptide. The posttranslational processing of the 1296 amino acid residue long gene product involves removal of the initiating methionine, formation of disulfide bridges, and limited proteolysis (nicking) by the bacterial protease(s). The mature dichain neurotoxin is made of a ∼50-kD light chain and a ∼100-kD heavy chain connected by a disulfide bridge. DNA derived amino acid sequencepredicted a total of 9 Cys residues (Binzet al., 1990,J. Biol. Chem. 265, 9153–9158; Thompsonet al., 1990,Eur. J. Biochem. 189, 73–81). Treatment of the dichain neurotoxin, dissolved in 6 M guanidine. HCl, with 4-vinylpyridine converted 5 Cys residues into S-pyridylethyl cysteine residues; but alkylation after mercaptolysis converted all 9 Cys residues in the S-pyridylethylated form. After confirming the predicted number of Cys residues by amino acid analysis, the positions of the 5 Cys residues carrying sulfhydryl groups and the 4 involved in disulfide bridges were determined by comparing the elution patterns in reversed-phase HPLC of the cyanogen bromide mixtures of the exclusively alkylated and the mercaptolyzed-alkylated neurotoxin. The chromatographically isolated components were identified by N-terminal amino acid sequence analysis. The HPLC patterns showed characteristic differences. The Cys residuespredicted in positions 133, 164, 790, 966, and 1059 were found in the sulfhydryl form; Cys 429 and 453 were found disulfide-bridged connecting the light and heavy chains, and Cys 1234 and 1279 were found in an intrachain disulfide-bridge near the C-terminus in the heavy chain. Ten amino acid residues, Thr 438-Lys 447,predicted to be present in the single chain neurotoxin were not found in the dichain neurotoxin. Nicking of single-chain neurotoxin by the protease(s) endogenous to the bacteria therefore appears to excise these 10 amino acid residues from the nicking region which leaves Lys 437 as the C-terminus of the light chain and Ala 448 as the N-terminus of the heavy chain. The N-terminal Pro 1 and C-terminal Leu 1295,predicted from the nucleotide sequence, remain conserved after nicking. Residues Pro 1-Lys 437 and Ala 448-Leu 1295 constitute the light and heavy chains, respectively. The C-termini were determined by isolation of short C-terminal peptide fragments and subsequent sequence analysis by Edman degradation. About 20% of the amino acid sequence predicted from DNA analysis was confirmed in these studies by protein-chemical methods.Keywords
This publication has 32 references indexed in Scilit:
- Botulinum type A neurotoxin digested with pepsin yields 132, 97, 72, 45, 42, and 18 kD fragmentsProtein Journal, 1993
- Sequence of the gene encoding type F neurotoxin of Clostridium botulinumFEMS Microbiology Letters, 1992
- Sequences of the botulinal neurotoxin E derived from Clostridium botulinum type E (strain beluga) and Clostridium butyricum (strains ATCC 43181 and ATCC 43755)Biochemical and Biophysical Research Communications, 1992
- Crystallization and preliminary X-ray analysis of botulinum neurotoxin type AJournal of Molecular Biology, 1991
- Therapeutic Uses of Botulinum ToxinNew England Journal of Medicine, 1991
- Arrangement of disulfide bridges and positions of sulfhydryl groups in tetanus toxinEuropean Journal of Biochemistry, 1990
- Characterization of botulinum type a neurotoxin gene: Delineation of the N-terminal encoding regionBiochemical and Biophysical Research Communications, 1989
- Nicking of single chain Clostridiumbotulinum type A neurotoxin by an endogenous proteaseBiochemical and Biophysical Research Communications, 1989
- Partial amino acid sequence of the heavy and light chains of botulinum neurotoxin type ABiochemical and Biophysical Research Communications, 1984
- A common subunit structure in Clostridium botulinum type A, B and E toxinsBiochemical and Biophysical Research Communications, 1972