Abstract
Orbit spaces of low-dimensional representations of classical and exceptional Lie groups are constructed and tabulated. We observe that the orbit spaces of some single irreducible representations (adjoints, second-rank symmetric and antisymmetric tensors of classical Lie groups, and the defining representations of F4 and E6) are warped polyhedrons with (locally) more protrudent boundaries corresponding to higher level little groups. The orbit spaces of two irreducible representations have different shapes. We observe that dimension and concavity of different strata are not sharply distinguished. We explain that the observed orbit space structure implies that a physical system tends to retain as much symmetry as possible in a symmetry breaking process. In Appendix A, we interpret our method of minimization in the orbit space in terms of conventional language and show how to find all the extrema (in the representation space) of a general group-invariant scalar potential monotonic in the orbit space. We also present the criterion to tell whether an extremum is a local minimum or maximum or an inflection point. In Appendix B, we show that the minimization problem can always be reduced to a two-dimensional one in the case of the most general Higgs potential for a single irreducible representation and to a three-dimensional one in the case of an even degree Higgs potential for two irreducible representations. We explain that the absolute minimum condition prompts the boundary conditions enough to determine the representation vector.

This publication has 57 references indexed in Scilit: