A Room Design of Order 14

Abstract
A Room design of order 2n, where n is a positive integer, is an arrangement of 2n objects in a square array of side 2n - 1, such that each of the (2n - 1)2 cells of the array is either empty or contains exactly two distinct objects; each of the 2n objects appears exactly once in each row and column; and each (unordered) pair of objects occurs in exactly one cell. A Room design of order 2n is said to be cyclic if the entries in the (i + l) th row are obtained by moving the entries in the i th row one column to the right (with entries in the (2n - l)th column being moved to the first column), and increasing the entries in each occupied cell by l(mod 2n - 1), except that the digit 0 remains unchanged.

This publication has 3 references indexed in Scilit: