Abstract
A simple method of calculating the resolution of small-angle neutron data from diffractometers which use time-of-flight techniques has been derived in terms of the variances of the time and spatial channels of the measurement. The method is used to calculate the resolution in scattering-vector space of scattering intensity from a simulated isotropic scatterer on the small-angle neutron diffractometer at the Intense Pulsed Neutron Source at Argonne National Laboratory. The effects of the various instrumental geometries, time-of-flight measurement strategies and data reduction methods that can be chosen by the experimenter are considered. It is found that the best resolution is obtained with weighted constant Δt/t time-of-flight data acquisition schemes, with the detector placed in the beam in such a way that the highest possible angular range is accessed.

This publication has 0 references indexed in Scilit: