Recombinant human bone morphogenetic proteins‐2 and ‐4 induce several mesenchymal phenotypes in culture

Abstract
Bone morphogenetic protein has previously been shown to induce the formation of cartilage and bone in vivo. We have isolated a population of mesenchymal stem cells from rat skeletal muscle capable of forming multiple mesodermal morphologies in vitro. These cells were treated with recombinant human bone morphogenetic proteins-2 and -4 to determine the differentiation-inducing activities of bone morphogenetic protein on these cells. The mesenchymal stem cells were cultured in medium with 10% preselected horse serum containing 0 to 100 ng/ml recombinant human bone morphogenetic proteins-2 or -4 for a maximum of 4 weeks. Control cultures maintained the stellate morphology of mesenchymal stem cells. Cultures treated with recombinant human bone morphogenetic protein-2 exhibited discrete cartilage nodules and mineralized bone nodules. The first increase in chondrogenesis was seen at 0.5 ng/ml. Cultures treated with recombinant human bone morphogenetic protein-4 also exhibited an increase in chondrogenesis at the higher concentration of 2 ng/ml. Skeletal myotubes and adipocytes also appeared in cultures treated with either bone morphogenetic protein. Mesenchymal stem cells do respond to inductive factors, but bone morphogenetic proteins-2 and -4 were not specific for the induction of cartilage and bone.

This publication has 0 references indexed in Scilit: