Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies

Abstract
Eukaryotic proteins expressed inEscherichia coli often accumulate within the cell as insoluble protein aggregates or inclusion bodies. The recovery of structure and activity from inclusion bodies is a complex process, there are no general rules for efficient renaturation. Research into understanding how proteins fold in vivo is giving rise to potentially new refolding methods, for example, using molecular chaperones. In this article we review what is understood about the main three classes of chaperone: the Stress 60, Stress 70, and Stress 90 proteins. We also give an overview of current process strategies for renaturing inclusion bodies, and report the use of novel developments that have enhanced refolding yields.