A Maximum Likelihood Method for Analyzing Pseudogene Evolution: Implications for Silent Site Evolution in Humans and Rodents
Open Access
- 1 January 2002
- journal article
- research article
- Published by Oxford University Press (OUP) in Molecular Biology and Evolution
- Vol. 19 (1) , 110-117
- https://doi.org/10.1093/oxfordjournals.molbev.a003975
Abstract
We present a new likelihood method for detecting constrained evolution at synonymous sites and other forms of nonneutral evolution in putative pseudogenes. The model is applicable whenever the DNA sequence is available from a protein-coding functional gene, a pseudogene derived from the protein-coding gene, and an orthologous functional copy of the gene. Two nested likelihood ratio tests are developed to test the hypotheses that (1) the putative pseudogene has equal rates of silent and replacement substitutions; and (2) the rate of synonymous substitution in the functional gene equals the rate of substitution in the pseudogene. The method is applied to a data set containing 74 human processed-pseudogene loci, 25 mouse processed-pseudogene loci, and 22 rat processed-pseudogene loci. Using the informatics resources of the Human Genome Project, we localized 67 of the human-pseudogene pairs in the genome and estimated the GC content of a large surrounding genomic region for each. We find that, for pseudogenes deposited in GC regions similar to those of their paralogs, the assumption of equal rates of silent and replacement site evolution in the pseudogene is upheld; in these cases, the rate of silent site evolution in the functional genes is ∼70% the rate of evolution in the pseudogene. On the other hand, for pseudogenes located in genomic regions of much lower GC than their functional gene, we see a sharp increase in the rate of silent site substitutions, leading to a large rate of rejection for the pseudogene equality likelihood ratio test.Keywords
This publication has 22 references indexed in Scilit:
- The Glean MachinePublished by Springer Nature ,2002
- Evidence for DNA Loss as a Determinant of Genome SizeScience, 2000
- Compositional Mapping of Mouse Chromosomes and Identification of the Gene-Rich RegionsChromosome Research, 1997
- High intrinsic rate of DNA loss in DrosophilaNature, 1996
- The distribution of genes in the human genomeGene, 1991
- Basic local alignment search toolJournal of Molecular Biology, 1990
- An evolutionary perspective on synonymous codon usage in unicellular organismsJournal of Molecular Evolution, 1986
- Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implicationsJournal of Molecular Evolution, 1984
- Patterns of nucleotide substitution in pseudogenes and functional genesJournal of Molecular Evolution, 1982
- Pseudogenes as a paradigm of neutral evolutionNature, 1981