Heat flow and boundary value problem for harmonic maps
- 1 October 1989
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 6 (5) , 363-395
- https://doi.org/10.1016/s0294-1449(16)30316-x
Abstract
We prove an existence result for the heat flow, and apply minimax principles to deduce existence and multiplicity results for harmonic mар. Résumé: On démontre un théorème d’existence pour l’équation de la chaleur, et on déduit des résultats d’existence et de multiplicité pour divers problèmes aux limites associés aux applications harmoniques.This publication has 8 references indexed in Scilit:
- On the evolution of harmonic mappings of Riemannian surfacesCommentarii Mathematici Helvetici, 1985
- Large solutions for harmonic maps in two dimensionsCommunications in Mathematical Physics, 1983
- A maximum principle for harmonic mappings which solve a Dirichlet problemmanuscripta mathematica, 1982
- The Existence of Minimal Immersions of 2-SpheresAnnals of Mathematics, 1981
- Morse theory by perturbation methods with applications to harmonic mapsTransactions of the American Mathematical Society, 1981
- A Report on Harmonic MapsBulletin of the London Mathematical Society, 1978
- Restrictions on harmonic maps of surfacesTopology, 1976
- Singular Integrals and Differentiability Properties of Functions (PMS-30)Published by Walter de Gruyter GmbH ,1971