Comparative cross-linking activities of lactose-specific plant and animal lectins and a natural lactose-binding immunoglobulin G fraction from human serum with asialofetuin
Open Access
- 1 December 1996
- journal article
- research article
- Published by Oxford University Press (OUP) in Glycobiology
- Vol. 6 (8) , 843-849
- https://doi.org/10.1093/glycob/6.8.843
Abstract
Plant and animal lectins bind and cross-link certain multiantennary oligosaccharides, glycopeptides, and glycoproteins. This can lead to the formation of homogeneous cross-linked complexes, which may differ in their stoichiometry depending on the nature of the sugar receptor involved. As a precisely defined ligand, we have employed bovine asialofetuin (ASF), a glycoprotein that possesses three asparagine-linked triantennary complex carbohydrate chains with terminal LacNAc residues. In the present study, we have compared the carbohydrate cross-linking properties of two Lac-specific plant lectins, an animal lectin and a naturally occurring Lac-binding polyclonal iminunoglobulin G subfraction from human serum with the ligand. Quantitative precipitation studies of the Lac-specific plant lectins, Viscum album agglutinin and Ricinus communis agglutinin, and the Lac-specific 16 kDa dimenc galectin from chicken liver demonstrate that these lectins form specific, stoichiometric cross-linked complexes with ASF. At low concentrations of ASF, 1:9 ASF/lectin (monomer) complexes formed with both plant lectins and the chicken lectin. With increasing concentrations of ASF, 1:3 ASF/lectin (monomer) complexes formed with the lectins irrespective of their source or size. The naturally occurring polyclonal antibodies, however, revealed a different cross-linking behavior. They show the formation of 1:3 ASF/antibody (per Fab moiety) cross-linked complexes at all concentrations of ASF. These studies demonstrate that Lac-specific plant and animal lectins as well as the Lac-binding immunoglobulin subfraction form specific stoichiometric cross-linked complexes with ASF. These results are discussed in terms of the structure-function properties of multivalent lectins and antibodies.Keywords
This publication has 0 references indexed in Scilit: