The mitochondrial origin of postischemic arrhythmias
Top Cited Papers
Open Access
- 1 December 2005
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 115 (12) , 3527-3535
- https://doi.org/10.1172/jci25371
Abstract
Recovery of the mitochondrial inner membrane potential (ΔΨm) is a key determinant of postischemic functional recovery of the heart. Mitochondrial ROS-induced ROS release causes the collapse of ΔΨm and the destabilization of the action potential (AP) through a mechanism involving a mitochondrial inner membrane anion channel (IMAC) modulated by the mitochondrial benzodiazepine receptor (mBzR). Here, we test the hypothesis that this mechanism contributes to spatiotemporal heterogeneity of ΔΨm during ischemia-reperfusion (IR), thereby promoting abnormal electrical activation and arrhythmias in the whole heart. High-resolution optical AP mapping was performed in perfused guinea pig hearts subjected to 30 minutes of global ischemia followed by reperfusion. Typical electrophysiological responses, including progressive AP shortening followed by membrane inexcitablity in ischemia and ventricular fibrillation upon reperfusion, were observed in control hearts. These responses were reduced or eliminated by treatment with the mBzR antagonist 4′-chlorodiazepam (4′-Cl-DZP), which blocks depolarization of ΔΨm. When applied throughout the IR protocol, 4′-Cl-DZP blunted AP shortening and prevented reperfusion arrhythmias. Inhibition of ventricular fibrillation was also achieved by bolus infusion of 4′-Cl-DZP just before reperfusion. Conversely, treatment with an agonist of the mBzR that promotes ΔΨm depolarization exacerbated IR-induced electrophysiological changes and failed to prevent arrhythmias. The effects of these compounds were consistent with their actions on IMAC and ΔΨm. These findings directly link instability of ΔΨm to the heterogeneous electrophysiological substrate of the postischemic heart and highlight the mitochondrial membrane as a new therapeutic target for arrhythmia prevention in ischemic heart disease.Keywords
This publication has 29 references indexed in Scilit:
- Mechanisms Underlying Conduction Slowing and Arrhythmogenesis in Nonischemic Dilated CardiomyopathyCirculation Research, 2004
- Acute ischemia-induced gap junctional uncoupling and arrhythmogenesisCardiovascular Research, 2004
- Basic Mechanisms of Cardiac Impulse Propagation and Associated ArrhythmiasPhysiological Reviews, 2004
- Synchronized Whole Cell Oscillations in Mitochondrial Metabolism Triggered by a Local Release of Reactive Oxygen Species in Cardiac MyocytesJournal of Biological Chemistry, 2003
- Role of the Mitochondrial Permeability Transition in Myocardial DiseaseCirculation Research, 2003
- Pathophysiological and protective roles of mitochondrial ion channelsThe Journal of Physiology, 2000
- KATP channels and ‘border zone’ arrhythmias: role of the repolarization dispersion between normal and ischaemic ventricular regionsBritish Journal of Pharmacology, 1999
- Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell deathThe Journal of Physiology, 1999
- Oscillations of Membrane Current and Excitability Driven by Metabolic Oscillations in Heart CellsScience, 1994
- Properties of the inner membrane anion channel in intact mitochondriaJournal of Bioenergetics and Biomembranes, 1992