Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin
Open Access
- 28 September 2006
- journal article
- research article
- Published by Oxford University Press (OUP) in Human Molecular Genetics
- Vol. 15 (22) , 3280-3292
- https://doi.org/10.1093/hmg/ddl404
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1, encoding polycystin-1 (PC1), or PKD2 (polycystin-2, PC2). Autosomal recessive PKD (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). No molecular link between ADPKD and ARPKD has been determined. Here, we demonstrated, by yeast two-hybrid and biochemical assays, that KIF3B, a motor subunit of kinesin-2, associates with PC2 and FPC. Co-immunoprecipitation experiments using Madin-Darby canine kidney (MDCK) and inner medullary collecting duct (IMCD) cells and human kidney revealed that PC2 and KIF3B, FPC and KIF3B and, furthermore, PC2 and FPC are endogenously in the same complex(es), though no direct association between the PC2 and FPC intracellular termini was detected. In vitro binding and Far Western blot experiments demonstrated that PC2 and FPC are in the same complex only if KIF3B is present, presumably by forming a PC2–KIF3B–FPC complex. This was supported by our observation that altering KIF3B level in IMCD cells by over-expression or siRNA significantly affected complexing between PC2 and FPC. Immunofluorescence experiments showed that PC2, FPC and KIF3B partially co-localized in primary cilia of over-confluent and perinuclear regions of sub-confluent cells. Furthermore, KIF3B mediated functional modulation of purified PC2 channels by FPC in a planer lipid bilayer electrophysiology system. The FPC C-terminus substantially stimulated PC2 channel activity in the presence of KIF3B, whereas FPC or KIF3B alone had no effect. Taken together, we discovered that kinesin-2 is a linker between PC2 and FPC and mediates the regulation of PC2 channel function by FPC. Our study may be important for elucidating common molecular pathways for PKD of different genotypes.Keywords
This publication has 46 references indexed in Scilit:
- Genetics and Pathogenesis of Polycystic Kidney DiseaseJournal of the American Society of Nephrology, 2002
- A Novel Gene Encoding a TIG Multiple Domain Protein Is a Positional Candidate for Autosomal Recessive Polycystic Kidney DiseaseGenomics, 2002
- PKHD1, the Polycystic Kidney and Hepatic Disease 1 Gene, Encodes a Novel Large Protein Containing Multiple Immunoglobulin-Like Plexin-Transcription–Factor Domains and Parallel Beta-Helix 1 RepeatsAmerican Journal of Human Genetics, 2002
- The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like proteinNature Genetics, 2002
- Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca 2+ -permeable nonselective cation channelProceedings of the National Academy of Sciences, 2000
- Co-assembly of polycystin-1 and -2 produces unique cation-permeable currentsNature, 2000
- Autosomal recessive polycystic kidney diseaseJournal of Molecular Medicine, 1998
- PKD1 interacts with PKD2 through a probable coiled-coil domainNature Genetics, 1997
- PKD2 , a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane ProteinScience, 1996
- The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16Cell, 1994