Abstract
The γ134.5 protein of herpes simplex virus type 1 (HSV-1) functions to block the shutoff of protein synthesis involving double-stranded RNA-dependent protein kinase (PKR). In this process, the γ134.5 protein recruits cellular protein phosphatase 1 (PP1) to form a high-molecular-weight complex that dephosphorylates eIF-2α. Here we show that the γ134.5 protein is capable of mediating eIF-2α dephosphorylation without any other viral proteins. While deletion of amino acids 1 to 52 from the γ134.5 protein has no effect on eIF-2α dephosphorylation, further truncations up to amino acid 146 dramatically reduce the activity of the γ134.5 protein. An additional truncation up to amino acid 188 is deleterious, indicating that the carboxyl-terminal domain alone is not functional. Like wild-type HSV-1, the γ134.5 mutant with a truncation of amino acids 1 to 52 is resistant to interferon, and resistance to interferon is coupled to eIF-2α dephosphorylation. Intriguingly, this mutant exhibits a similar growth defect seen for the γ134.5 null mutant in infected cells. Restoration of the wild-type γ134.5 gene in the recombinant completely reverses the phenotype. These results indicate that eIF-2α dephosphorylation mediated by the γ134.5 protein is required for HSV response to interferon but is not sufficient for viral replication. Additional functions or activities of the γ134.5 protein contribute to efficient viral infection.

This publication has 45 references indexed in Scilit: