THREE-BODY RECOMBINATION OF GASEOUS IONS

Abstract
The recombination of gaseous ions in the presence of third bodies is assumed to follow a sequence of two bimolecular steps: M + X+ [Formula: see text] MX+ and MX+ + Y− [Formula: see text] XY + M. The termolecular rate constants of the over-all processes are calculated for several ionized gases at various temperatures. For the calculation, the equilibrium internuclear separation and the corresponding binding energy of a complex ion, MX+, are obtained by minimizing the interaction energy between M and X+, which is approximated to the sum of the Lennard-Jones potential for the M–X interaction and the polarization energy between M and X+. The recombination coefficients of some ionized gases at 288 °K and various pressures are calculated and compared with the observed data. The agreement is found to be satisfactory. The limitations of this theoretical approach are discussed.

This publication has 7 references indexed in Scilit: