Abstract
This paper presents, in two parts, a theoretical investigation of the aerodynamic response produced by an oscillating cascade placed in a supersonic stream with subsonic axial velocity component. Predictions are based on the successive solution of two linear boundary value problems which treat the velocity potential and the pressure, respectively, as basic dependent variables. A solution for the potential has been reported earlier and is used here to provide upper surface blade pressure distributions. This information serves as a boundary condition for the second problem. The solution for the unsteady pressure field, described in Part 1, is obtained by a construction procedure which parallels that used earlier to determine the potential. With the present procedure, blade pressure difference distributions and aerodynamic coefficients are accurately and efficiently determined for both subresonant and superresonant blade motions. Supersonic resonance phenomena and selected numerical results are discussed in Part 2 of the paper.

This publication has 0 references indexed in Scilit: