Relative thermostability of the chloroplast envelope

Abstract
Intact isolated chloroplasts from leaves of Spinacia oleracea L. were subjected to heat treatment. After heating, the integrity of the chloroplast envelopes and the activities of various light-dependent chloroplast reactions were tested. The integrity of the chloroplast envelopes, as judged from rates of ferricyanide reduction, enzyme compartmentation and visual appearance of the chloroplasts in the light microscope with phase optics, was affected much less by heat stress than the photochemical reactions of thylakoids. This indicates a comparatively high thermostability of the chloroplast envelope membranes. It is also evidence of a differential thermostability of different biomembranes. Photophosphorylation was highly susceptible to thermal stress. Heat treatment that partly inactivated phosphorylation stimulated light-dependent quenching of 9-aminoacridine fluorescence, which served as an indicator of proton transfer from stroma to thylakoids in intact chloroplasts. Drastic changes in the characteristics of chlorophyll a fluorescence emission caused by heating were probably due to structural alterations of the thylakoid system.

This publication has 28 references indexed in Scilit: