Quantized electric-flux-tube solutions to Yang-Mills theory

Abstract
We suggest that long-distance Yang-Mills theory is more conveniently described in terms of electric rather than the customary magnetic vector potentials. On this basis we propose as an effective Lagrangian for this regime the most simple gauge-invariant (under the magnetic rather than electric gauge group) and Lorentz-invariant Lagrangian which yields a 1/q4 gluon propagator in the Abelian limit. The resulting classical equations of motion have solutions corresponding to tubes of color electric flux quantized in units of e/2 (e is the Yang-Mills coupling constant). To exponential accuracy the electric color energy is contained in a cylinder of finite radius, showing that continuum Yang-Mills theory has excitations which are confined tubes of color electric flux. This is the criterion for electric confinement of color.