X-ray resonant scattering of(004n+2)forbidden reflections in spinel ferrites

Abstract
The origin of the x-ray resonant scattering of (002) and (006) forbidden reflections in the spinel ferrites has been investigated. Resonant features were previously observed in Fe3O4 at the pre-edge and main-edge energies of the FeK-absorption edge. They were ascribed to dipole–quadrupole and dipole transitions at the tetrahedral and pseudo-octahedral Fe ions, respectively. To corroborate this origin and to differentiate between effects at the different metal sites, we have studied the energy and azimuthal dependencies of these reflections at the Fe, Co, and MnK edges in MnFe2O4 and CoFe2O4 spinels. Mn2+ mainly replaces Fe in the tetrahedral site whereas Co2+ occupies the octahedral site. No pre-edge peak is observed either at the FeK-edge in MnFe2O4 or at the CoK edge in CoFe2O4. On the other hand, the peak at the absorption edge and the oscillations at energies beyond the edge are observed at the FeK edge in MnFe2O4 and CoFe2O4 and at the CoK edge in CoFe2O4. Therefore, the pre-edge peak comes from the metal ions at the tetrahedral site while the main-edge peak arises from the metal ions at the pseudo-octahedral site of the spinel structure. The azimuthal dependence and the energy line shape confirm the dipole–quadrupole and dipole characters of these pre-edge and main-edge resonances, respectively. The energy-dependence spectra of Fe3O4 above and below the Néel temperature are alike, discarding any magnetic effect on the resonant spectra. Finally, the fine structure at energies beyond the absorption edge has been theoretically simulated considering only the local anisotropy of the dipolar atomic scattering factor of the pseudo-octahedral metal atom. These results demonstrate that (004n+2) resonant reflections arise from the anisotropy of the local structure around the transition-metal atom without contributions of charge or d-orbital ordering.