A Method for the Computation of the Error Function of a Complex Variable
- 1 April 1965
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 19 (89) , 127-129
- https://doi.org/10.2307/2004107
Abstract
This paper presents a method of computing $z \equiv \left ( {2/\sqrt \pi } \right )\int _0^z {{e^{ - {u^2}}}du}$, where $z$ is complex. It is shown that $z \equiv 1 - {\text {erf }}z$ has no zeros in the right-hand half plane. An estimate of $|{\text {erfc }}z|$ is derived.
Keywords
This publication has 4 references indexed in Scilit:
- The Plasma Dispersion Function: The Hilbert Transform of the GaussianMathematics of Computation, 1963
- On the error function of a complex argumentZeitschrift für angewandte Mathematik und Physik, 1956
- Introduction to Measure and Integration.The American Mathematical Monthly, 1953
- Formulas for Calculating the Error Function of a Complex VariableMathematical Tables and Other Aids to Computation, 1951