Short-Term Human Prostate Primary Xenografts
Open Access
- 1 March 2004
- journal article
- Published by American Association for Cancer Research (AACR) in Cancer Research
- Vol. 64 (5) , 1712-1721
- https://doi.org/10.1158/0008-5472.can-03-2700
Abstract
Transgenic spontaneously occurring and transplantable xenograft models of adenocarcinoma of the prostate (CaP) are established tools for the study of CaP progression and metastasis. However, no animal model of CaP has been characterized that recapitulates the response of the human prostate vascular compartment to the evolving tumor microenvironment during CaP progression. We report that primary xenografts of human CaP and of noninvolved areas of the human prostate peripheral zone transplanted to athymic nude mice provide a unique model of human angiogenesis occurring in an intact human prostate tissue microenvironment. Angiogenesis in human kidney primary xenografts established from human renal cell carcinoma and noninvolved kidney tissue, a highly vascular organ and cancer, was compared with angiogenesis in xenografts from the relatively less vascularized prostate. Immunohistochemical identification of the human versus mouse host origin of the endothelial cells and of human endothelial cell proliferation in the human prostate and human kidney xenografts demonstrated that: (a) the majority of the vessels in primary xenografts of benign and malignant tissue of both organs were lined with human endothelial cells through the 30-day study period; (b) the mean vessel density was increased in both the CaP and benign prostate xenografts relative to the initial tissue, whereas there was no significant difference in mean vessel density in the renal cell carcinoma and benign kidney xenografts compared with the initial tissue; and (c) the number of vessels with proliferating endothelial cells in primary xenografts of CaP and benign prostate increased compared with their respective initial tissue specimens, whereas the number of vessels with proliferating endothelial cells decreased in the benign kidney xenografts. Short-term primary human prostate xenografts, therefore, represent a valuable in vivo model for the study of human angiogenesis within a human tissue microenvironment and for comparison of angiogenesis in CaP versus benign prostate.Keywords
This publication has 55 references indexed in Scilit:
- Comparative and functional analyses of LYL1 loci establish marsupial sequences as a model for phylogenetic footprinting☆ ☆Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession No. AL731834.Genomics, 2003
- Diversity in unity: The biochemical composition of the endothelial cell surface varies between the vascular bedsMicroscopy Research and Technique, 2002
- Establishment of Short-Term Primary Human Prostate Xenografts for the Study of Prostate Biology and CancerThe American Journal of Pathology, 2001
- Autochthonous mouse models for prostate cancer: past, present and futureSeminars in Cancer Biology, 2001
- Use of nude mouse xenograft models in prostate cancer researchThe Prostate, 2000
- Current Status Of Antiangiogenic FactorsBritish Journal of Haematology, 2000
- Microvessel Density as a Predictor of PSA Recurrence After Radical ProstatectomyAmerican Journal of Clinical Pathology, 2000
- Origins of circulating endothelial cells and endothelial outgrowth from bloodJournal of Clinical Investigation, 2000
- Androgens Induce the Expression of Vascular Endothelial Growth Factor in Human Fetal Prostatic FibroblastsEndocrinology, 1998
- Vascular Permeability Factor (Vascular Endothelial Growth Factor) is Strongly Expressed in the Normal Male Genital Tract and is Present in Substantial Quantities in SemenJournal of Urology, 1995