Effects of CDPcholine and CDPethanolamine on the Alterations in Rat Brain Lipid Metabolism Induced by Global Ischemia

Abstract
The fast turnover pool of rat brain lipids was labeled by intracerebral injection of [3H]acetate. Cerebral ischemia for a duration of 5 min after decapitation caused a 2.2‐fold increase in radioactivity in the free fatty acids and loss of more than 20% of the radioactivity from choline and ethanolamine glycerophospholipids. An intracerebral injection of 0.6 μmol each of cytidine diphosphocholine (CDPcholine) and cytidine diphosphoethanolamine (CDPethanolamine) prevented the loss of radioactivity from the glycerophospholipids and decreased the amount of radioactivity in the free fatty acids by 59% as compared with control values and 82% as compared with ischemia values. By GLC assays of the mass of the free fatty acids, there was a threefold increase of free fatty acids in ischemic brains. Pretreatment of ischemic brains with CDPcholine and CDPethanolamine reduced the levels of unesterified fatty acids to 60% of the control values. Thus, a prior injection of cytidine nucleotides prevented the release of free fatty acids observed in ischemic brains.