Improving the Voltage Holdoff Performance of Alumina Insulators in Vacuum Through Quasimetallizing
- 1 October 1980
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Electrical Insulation
- Vol. EI-15 (5) , 419-428
- https://doi.org/10.1109/tei.1980.298336
Abstract
Treatment of the surface of an alumina insulator with coatings incorporating varying amounts of Cr, Mn, and Ti can increase the vacuum voltage holdoff capability of the insulator significantly (up to 25%). During processing (quasimetallizing) the coating penetrates into the alumina, making it insensitive to mechanical damage. This quasimetallizing treatment is also compatible with subsequent metallizing and brazing of the alumina insulator. A 7/1 Mn/Ti mix performed very well, being found to be as effective on a 94% A12O3 alumina as on the previously investigated 95% A12O3, 1% Cr2O3 alumina. Mixes of 6/1/1 Mn/Ti/Cr and 6/3 Mn/Cr performed about as well as the 7/1 Mn/Ti mix, but no better. Quasimetallizing with pure Mn improved the voltage holdoff capability of alumina by about half as much as when using the 7/1 Mn/Ti mix. Mixes with relatively high titanium content (4/3 Mn/Ti and 3/3/2 Mn/Ti/Cr) significantly increased the voltage holdoff capability of the alumina, but unfortunately were much more prone than the 7/1 Mn/Ti mix (or plain alumina) to suffer severe and permanent damage when a breakdown did occur. Quasimetallizing with appropriate formulations. has been shown to change the surface characteristics of alumina in two ways: (1) it decreases the surface resistivity of the alumina, and (2) it decreases the secondary electron emission yield of the alumina. Each change improves the voltage holdoff characteristics of the alumina.Keywords
This publication has 22 references indexed in Scilit:
- The effect of Mn/Ti surface treatment on voltage-holdoff performance of alumina insulators in vaccumJournal of Applied Physics, 1978
- Flashover in a vacuumVacuum, 1977
- The Effect of Chromium Oxide Coatings on Surface Flashover of Alumina Spacers in VacuumIEEE Transactions on Electrical Insulation, 1976
- The Effect of Cuprous Oxide Coatings on Surface Flashover of Dielectric Spacers in VacuumIEEE Transactions on Electrical Insulation, 1974
- Flashover Voltage over Ceramics in High VacuumJapanese Journal of Applied Physics, 1974
- Mechanism of fast surface flashover in vacuumApplied Physics Letters, 1974
- DC Electric-Field Modifications Produced by Solid Insulators Bridging a Uniform-Field Vacuum GapIEEE Transactions on Electrical Insulation, 1973
- Effect of dielectric constant on surface discharge of polymer insulators in vacuumJournal of Applied Physics, 1973
- Mechanism of Surface Charging of High-Voltage Insulators in VacuumIEEE Transactions on Electrical Insulation, 1973
- Solid insulators in vacuum: A review (Invited paper)Vacuum, 1968