Semi-classical bounds for resolvents of schrödinger operators and asymptotics for scattering phases
- 1 January 1984
- journal article
- research article
- Published by Taylor & Francis in Communications in Partial Differential Equations
- Vol. 9 (10) , 1017-1058
- https://doi.org/10.1080/03605308408820355
Abstract
Let be the Schrödinger opera¬tor and denote by R(z;H(h)), Im≠O , the resolvent of H(h). The object of the present paper is twofold: (i) We give semi-classical bounds on the boundary valuesto the positive axis of R(z;H(h)); (ii) As an application of (i), we find the coupleteasymptotics of scattering phases asKeywords
This publication has 12 references indexed in Scilit:
- A scattering theory for time-dependent long-range potentialsDuke Mathematical Journal, 1982
- Une formule de traces pour l'opérateur de Schrödinger dans $\mathbb{R}^3$Annales Scientifiques de lʼÉcole Normale Supérieure, 1981
- Comportement semi-classique du spectre des hamiltoniens quantiques elliptiquesAnnales de l'institut Fourier, 1981
- Spectre D'Un hamiltonien quantique et mecanique classiqueCommunications in Partial Differential Equations, 1980
- An analogue of Weyl’s formula for unbounded domains III. An epilogueDuke Mathematical Journal, 1979
- The weyl calculus of pseudo‐differential operatorsCommunications on Pure and Applied Mathematics, 1979
- Asymptotic behalrior of the scattering phase for exterior domainsCommunications in Partial Differential Equations, 1978
- The first variation of the scattering matrixJournal of Differential Equations, 1976
- Scattering theoryPublished by Springer Nature ,1976
- The spectral function of an elliptic operatorActa Mathematica, 1968