Abstract
This work investigates the effect of frequency, polarization, and angle of incidence of an electromagnetic (EM) wave on the specific absorption rate (SAR) and maximum temperature increase in the human eye at 900 MHz, 1.5 GHz, and 1.9 GHz. In particular, the temperature increase in the eye is compared for near-field and far-field exposures. The difference of a maximum temperature increase in the lens is also discussed between the head models of an adult and children. Throughout the investigations, our attention is paid to a maximum temperature increase in the lens for SAR values prescribed in safety standards. For the results of our investigation, the SAR and temperature increase in the eye are found to be largely dependent on the separation between the eye and a source, and the frequency, polarization, and angle of incidence of the EM wave. The maximum temperature increase (0.303/spl deg/C-0.349/spl deg/C) in the lens of the adult for the SAR value of 2.0 W/kg for the eye tissue (about 10 g) is marginally affected by the above-mentioned factors. No clear difference of a maximum temperature increase in the lens at the SAR limit is observed between the adult and children models.

This publication has 30 references indexed in Scilit: