Chemical Reactivity as Described by Quantum Chemical Methods
Open Access
- 24 April 2002
- journal article
- research article
- Published by MDPI AG in International Journal of Molecular Sciences
- Vol. 3 (4) , 276-309
- https://doi.org/10.3390/i3040276
Abstract
Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes) a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.Keywords
This publication has 88 references indexed in Scilit:
- A Reactivity Index Study to Choose the Best Template for a Particular Zeolite SynthesisThe Journal of Physical Chemistry A, 2001
- An ab initio study of adsorption related properties of diatomic molecules in zeolitesJournal of Molecular Catalysis A: Chemical, 2001
- Quantumchemical Study of the Catalytic Triad in Subtilisin: the Influence of Amino Acid Substitutions on Enzymatic ActivityJournal of Theoretical Biology, 1998
- The Hard and Soft Acids and Bases Principle: An Atoms in Molecules ViewpointThe Journal of Physical Chemistry, 1994
- Intrinsic framework electronegativity: A novel concept in solid state chemistryThe Journal of Chemical Physics, 1987
- Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineeringJournal of Molecular Biology, 1987
- Investigation of the adsorption in zeolites at zero fillingPure and Applied Chemistry, 1980
- Hard and Soft Acids and BasesJournal of the American Chemical Society, 1963
- ElectronegativityJournal of the American Chemical Society, 1961
- Wechselwirkung neutraler Atome und hom opolare Bindung nach der QuantenmechanikThe European Physical Journal A, 1927