Residual surface stress by localized contact-creep

Abstract
When a ceramic material creeps under a localized stress and then cools under load, a portion of the creep flow stress is retained as a residual compressive stress due to elastic rebound being constrained by the creep zone. Localized contact-creep was used to generate residual compressive surface stress in soda-lime glass and two sintered aluminas. The Vickers indentation technique was used to measure the residual stress within the contact-creep area. Alumina with a higher elastic modulus than glass retained higher residual compressive surface stress. The results were in reasonable agreement with the predicted stress distribution given by finite element analysis.