Matrix Metalloprotease Triggered Delivery of Cancer Chemotherapeutics from Hydrogel Matrixes
- 30 August 2005
- journal article
- Published by American Chemical Society (ACS) in Bioconjugate Chemistry
- Vol. 16 (5) , 1133-1139
- https://doi.org/10.1021/bc0501303
Abstract
Glioblastoma multiforme (GBM) is a highly advanced and invasive brain tumor due to which current treatments cannot completely treat GBM or prevent recurrence. Therefore, adjunctive treatments are required. As part of the invasive and angiogenic nature of GBM, it has been well established that matrix metalloprotease-2 (MMP-2) and MMP-9 are overactive. To better treat GBM using chemotherapy, we have designed a hydrogel-based delivery system that can control the release of drugs based on the activity of MMPs. A model chemotherapeutic agent, cisplatin (CDDP), complexed to an MMP substrate (peptide-linker) was incorporated into poly(ethylene glycol) diacrylate hydrogel wafers having different poly(ethylene glycol) chain lengths (M(n) approximately 574 and 4000). Hydrogel wafers were studied for physical characteristics and drug release in the presence and absence of MMPs. There was a substantial increase in CDDP release for the poly(ethylene glycol) 4000 hydrogel indicating that this chain length provides a mesh size that is sufficient to permit MMP activity within the hydrogel. CDDP bioactivity increased when the cell media was spiked with MMPs (0% cell survival) in case of the longer chain length as compared to in the absence of MMPs (approximately 50% cell survival). The results suggest that this system can be used for selective, local delivery of drugs where higher amounts of the drug are released in response to metastasis, angiogenesis, and invasion-promoting proteases. This strategy may prove to be a novel and effective method to overcome inadequacies in current controlled drug release systems.Keywords
This publication has 20 references indexed in Scilit:
- Development of amine-containing polymeric particlesJournal of Biomaterials Science, Polymer Edition, 2005
- Advancing the field of drug deliveryCancer Cell, 2003
- Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1‐MMP, MMP‐2 and MMP‐9 in human glioblastomasInternational Journal of Cancer, 2003
- The dawning era of polymer therapeuticsNature Reviews Drug Discovery, 2003
- HPMA Copolymers Platinates Containing Dicarboxylato Ligands. Preparation, Characterisation and In Vitro and In Vivo EvaluationJournal of Drug Targeting, 2002
- Motility factors and their receptors: signal transductionClinical & Experimental Metastasis, 1996
- Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivoClinical & Experimental Metastasis, 1996
- Optimization of photopolymerized bioerodible hydrogel properties for adhesion preventionJournal of Biomedical Materials Research, 1994
- The synthesis of XTT: A new tetrazolium reagent that is bioreducible to a water‐soluble formazanJournal of Heterocyclic Chemistry, 1988
- Tissue sulfhydryl groupsArchives of Biochemistry and Biophysics, 1959