A finiteness theorem for a dynamical class of entire functions

Abstract
We define a class Σ of entire functions whose covering properties are similar to those of rational maps. The set Σ is closed under composition of functions, and we show that when regarded as dynamical systems of the plane, the elements of Σ share many properties with rational maps. In particular, they have finite dimensional spaces of quasiconformal deformations, and they contain no wandering domains in their stable sets.

This publication has 6 references indexed in Scilit: