Abstract
Synopsis: The discrete coagulation-fragmentation equations are a model for the time-evolution of cluster growth. The processes described by the model are the coagulation of clusters via binary interactions and the fragmentation of clusters. The assumptions made on the fragmentation coefficients in this paper have the physical interpretation that surface effects are not important, i.e. it is unlikely that a large cluster will fragment into two large pieces. Since solutions of the initial-value problem are not unique, we have to restrict the class of solutions. With this restriction, we prove that the fragmentation acts as a strong damping mechanism and we obtain results on the asymptotic behaviour of solutions. The main tool used is an estimate on the moments of admissible solutions.

This publication has 5 references indexed in Scilit: