Effect of high glucose on mesangial cell protein kinase C-δ and -ε is polyol pathway-dependent
- 1 June 1999
- journal article
- research article
- Vol. 10 (6) , 1193-1203
Abstract
In diabetes mellitus, enhanced activity of mesangial cell protein kinase C (PKC) may contribute to nephropathy. The purpose of this study was to determine whether high glucose alters mesangial cell diacylglycerol-sensitive PKC-alpha, -beta(2), -delta, and -epsilon content, cellular distribution, and activity through polyol pathway activation. Primary cultured rat mesangial cells (passage 10) were growth-arrested in 0.5% fetal bovine serum and cultured in 5.6 mM glucose (NG) or 30 mM glucose (HG) for 48 h, with or without the aldose reductase inhibitor tolrestat or ARI-509. PKC isoform content in total cell lysates, or cytosol, membrane (Triton X-soluble), and particulate (sodium dodecyl sulfate-soluble) fractions was analyzed by immunoblotting, and band density in HG was expressed as a percentage of corresponding NG values. In HG at 48 h, increased total PKC-alpha (222 +/- 17% of NG, P < 0.001), -beta(2), (209 +/- 12%, P < 0.001), and -epsilon (195 +/- 19%, P < 0.001) were observed. L-Glucose had no effect on total PKC isoform content. HG caused increased membrane- and particulate-associated PKC-alpha (257 +/- 87 and 327 +/- 66%, respectively, P < 0.05), membrane-associated PKC-delta (143 +/- 10%, P < 0.05), and membrane-associated PKC-epsilon (186 +/- 11%, P < 0.001), with no change in cytosol contents. The HG effects were not mimicked by L-glucose. In NG or HG, PKC-beta(2) was not detected in the cytosol fraction, and membrane and particulate association were unchanged with phorbol ester stimulation. Confocal immunofluorescence imaging revealed that in HG, PKC-alpha, -delta, and -epsilon translocate to the nucleus and plasma membrane. Total PKC activity measured by in situ P-32-phosphorylation of the epidermal growth factor receptor substrate increased from 18 +/- 1 pmol/min per mg cell protein in NG to 33 +/- 3 pmol/min per mg cell protein in HG (P < 0.002 versus NG). In NG, tolrestat and ARI-509 exposure caused increased PKC activity, enhanced accumulation of total PKC-alpha and -beta(2), with no change in total or fractional recovery of PKC-delta or -epsilon. In HG, tolrestat and ARI-509 prevented the increase in total PKC-epsilon and membrane-associated PKC-delta and -epsilon. It is concluded that within 48 h of HG, enhanced mesangial cell PKC activity is associated with accumulation and cellular redistribution of diacylglycerol-sensitive PKC isoforms, and that increased PKC-epsilon content and membrane-associated PKC-delta and -epsilon are dependent on polyol pathway activation.This publication has 9 references indexed in Scilit:
- High glucose-induced mesangial cell altered contractility: role of the polyol pathwayDiabetologia, 1998
- Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells.Diabetes, 1998
- Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats.Journal of Clinical Investigation, 1997
- Amelioration of Vascular Dysfunctions in Diabetic Rats by an Oral PKC β InhibitorScience, 1996
- Prevention of early glomerulopathy with tolrestat in the streptozotocin-induced diabetic ratBiochemistry and Cell Biology, 1996
- Glomerular expression of tissue inhibitor of metalloproteinase (TIMP-1) in normal and diabetic rats.Journal of the American Society of Nephrology, 1996
- High glucose concentration causes a decrease in mesangium degradation. A factor in the pathogenesis of diabetic nephropathyDiabetes, 1994
- The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes MellitusNew England Journal of Medicine, 1993
- RETRACTED: Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications.Proceedings of the National Academy of Sciences, 1989