Abstract
We consider a system of two superconducting islands, each of which is coupled to a bulk superconductor via Josephson tunneling. One of the islands represents a “Cooper-pair box,” i.e., it is an effective two-level system. The other island has a smaller charging energy and approximates a harmonic oscillator. A capacitive interaction between the islands results in a dependence of the oscillator frequency on the quantum state of the box. Placing the latter in a coherent superposition of its eigenstates and exciting coherent oscillations in the large island will lead to a phase shift of these oscillations depending on the box quantum state, thereby producing a coherent superposition of two “mesoscopically distinct” quantum states in the large island.