High-frequency Synchronization of Neuronal Activity in the Subthalamic Nucleus of Parkinsonian Patients with Limb Tremor

Top Cited Papers
Open Access
Abstract
It has been hypothesized that in Parkinson9s disease (PD) there is increased synchronization of neuronal firing in the basal ganglia. This study examines the discharge activity of 121 pairs of subthalamic nucleus (STN) neurons in nine PD patients undergoing functional stereotactic mapping. Four patients had a previous pallidotomy. A double microelectrode setup was used to simultaneously record from two neurons separated by distances as small as 250 μm. In the six patients who had limb tremor during the recording session (n = 76 pairs), the discharge pattern of 12 pairs of tremor cells (TCs) was found to be coherent at the frequency of the limb tremor. Both in-phase and out-of-phase relationships were observed between TCs. Interestingly, in these six patients, 63/129 single neurons displayed 15–30 Hz oscillations, whereas 36/76 pairs were coherent in this frequency range. Although the oscillatory frequencies were variable between patients, they were highly clustered within a patient. The phase difference between these pairs was found to be close to 0. High-frequency synchronization was observed during periods of limb tremor as well as during intermittent periods with no apparent limb tremor. In contrast, in the three patients without limb tremor during the recording session, only 1/84 neurons had high-frequency oscillatory activity, and no TCs or synchronous high-frequency oscillatory activity was observed (n = 45 pairs). These findings demonstrate that in PD patients with limb tremor, many STN neurons display high-frequency oscillations with a high degree of in-phase synchrony. The results suggest that high-frequency synchronized oscillatory activity may be associated with the pathology that gives rise to tremor in PD patients.