Vector meson masses in hot nuclear matter : the effect of quantum corrections
Preprint
- 14 August 2001
Abstract
The medium modification of vector meson masses is studied taking into account the quantum correction effects for the hot and dense hadronic matter. In the framework of Quantum Hadrodynamics, the quantum corrections from the baryon and scalar meson sectors were earlier computed using a nonperturbative variational approach through a realignment of the ground state with baryon-antibaryon and sigma meson condensates. The effect of such corrections was seen to lead to a softer equation of state giving rise to a lower value for the compressibility and, an increase in the in-medium baryonic masses than would be reached when such quantum effects are not taken into account. These quantum corrections arising from the scalar meson sector result in an increase in the masses of the vector mesons in the hot and dense matter, as compared to the situation when only the vacuum polarisation effects from the baryonic sector are taken into account.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: