Heat exhaustion in a deep underground metalliferous mine

Abstract
OBJECTIVES To examine the incidence, clinical state, personal risk factors, haematology, and biochemistry of heat exhaustion occurring at a deep underground metalliferous mine. To describe the underground thermal conditions associated with the occurrence of heat exhaustion. METHODS A 1 year prospective case series of acute heat exhaustion was undertaken. A history was obtained with a structured questionnaire. Pulse rate, blood pressure, tympanic temperature, and specific gravity of urine were measured before treatment. Venous blood was analysed for haematological and biochemical variables, during the acute presentation and after recovery. Body mass index (BMI) and maximum O2consumption (V˙o2 max) were measured after recovery. Psychrometric wet bulb temperature, dry bulb temperature, and air velocity were measured at the underground sites where heat exhaustion had occurred. Air cooling power and psychrometric wet bulb globe temperature were derived from these data. RESULTS 106 Cases were studied. The incidence of heat exhaustion during the year was 43.0 cases / million man-hours. In February it was 147 cases / million man-hours. The incidence rate ratio for mines operating below 1200 m compared with those operating above 1200 m was 3.17. Mean estimated fluid intake was 0.64 l/h (SD 0.29, range 0.08–1.50). The following data were increased in acute presentation compared with recovery (p value, % of acute cases above the normal clinical range): neutrophils (p2 (SD 49, range 33–290) Mean psychrometric wet bulb globe temperature was 31.5°C (SD 2.0, range 25.2–35.3). Few cases (248 W/m2, or psychrometric wet bulb globe temperature 250 W/m2 at all underground work sites.