Nutrient Availability and Atmospheric CO2 Partial Pressure Modulate the Effects of Nutrient Heterogeneity on the Size Structure of Populations in Grassland Species
Open Access
- 16 May 2006
- journal article
- research article
- Published by Oxford University Press (OUP) in Annals of Botany
- Vol. 98 (1) , 227-235
- https://doi.org/10.1093/aob/mcl093
Abstract
• Background and Aims Size-asymmetric competition occurs when larger plants have a disproportionate advantage in competition with smaller plants. It has been hypothesized that nutrient heterogeneity may promote it. Experiments testing this hypothesis are inconclusive, and in most cases have evaluated the effects of nutrient heterogeneity separately from other environmental factors. The aim of this study was to test, using populations of Lolium perenne, Plantago lanceolata and Holcus lanatus, two hypotheses: (a) nutrient heterogeneity promotes size-asymmetric competition; and (b) nutrient heterogeneity interacts with both atmospheric CO2 partial pressure (PCO2) and nutrient availability to determine the magnitude of this response. • Methods Microcosms consisting of monocultures of the three species were grown for 90 d in a factorial experiment with the following treatments: PCO2 (37·5 and 70 Pa) and nutrient availability (NA; 40 and 120 mg of N added as organic material) combined with different spatial distribution of the organic material (NH; homogeneous and heterogeneous). Differences in the size of individual plants within populations (size inequality) were quantified using the coefficient of variation of individual above-ground biomass and the combined biomass of the two largest individuals in each microcosm. Increases in size inequality were associated with size-asymmetric competition. • Key Results Size inequality increased when the nutrients were heterogeneously supplied in the three species. The effects of NH on this response were more pronounced under high nutrient supply in both Plantago and Holcus (significant NA × NH interactions) and under elevated PCO2 in Plantago (significant PCO2 × NA × NH interaction). No significant two- and three-way interactions were found for Lolium. • Conclusions Our first hypothesis was supported by our results, as nutrient heterogeneity promoted size-asymmetric competition in the three species evaluated. Nutrient supply and PCO2 modified the magnitude of this effect in Plantago and Holcus, but not in Lolium. Thus, our second hypothesis was partially supported.Keywords
This publication has 39 references indexed in Scilit:
- MEASURING PLANT INTERACTIONS: A NEW COMPARATIVE INDEXEcology, 2004
- Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grasslandSoil Biology and Biochemistry, 2003
- The effects of spatial pattern of nutrient supply on yield, structure and mortality in plant populationsJournal of Ecology, 2003
- The effects of spatial pattern of nutrient supply on the early stages of growth in plant populationsJournal of Ecology, 2003
- Interactions between root and shoot competition vary among speciesOikos, 2002
- Effect of soil nutrient heterogeneity on the symmetry of belowground competitionPlant Ecology, 2001
- Investigating the relationship between neighbor root biomass and belowground competition: field evidence for symmetric competition belowgroundOikos, 2000
- Sampling spatial and temporal variation in soil nitrogen availabilityOecologia, 1999
- FERTILIZATION EFFECTS ON INTERACTIONS BETWEEN ABOVE- AND BELOWGROUND COMPETITION IN AN OLD FIELDEcology, 1999
- Population‐level responses to nutrient heterogeneity and density by Abutilon theophrasti (Malvaceae): an experimental neighborhood approachAmerican Journal of Botany, 1998