The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex

Abstract
Receptive fields of simple cells in the cat visual cortex have recently been discussed in relation to the `theory of communication' proposed by Gabor (1946). A number of investigators have suggested that the line-weighting functions, as measured orthogonal to the preferred orientation, may be best described as the product of a Gaussian envelope and a sinusoid (i.e. a Gabor function). Following Gabor's theory of `basis' functions, it has also been suggested that simple cells can be categorized into even- and odd-symmetric categories. Based on the receptive field profiles of 46 simple cells recorded from cat visual cortex, our analysis provides a quantitative description of both the receptive-field envelope and the receptive-field `symmetry' of each of the 46 cells. The results support the notion that, to a first approximation, Gabor functions with three free parameters (envelope width, carrier frequency and carrier phase) provide a good description of the receptive-field profiles. However, our analysis does not support the notion that simple cells generally fit into even- and odd-symmetric categories.