Redistribution of Ca2+among cytosol and organella during stimulation of bovine chromaffin cells

Abstract
Recent results indicate that Ca2+ transport by organella contributes to shaping Ca2+ signals and exocytosis in adrenal chromaffin cells. Therefore, accurate measurements of [Ca2+] inside cytoplasmic organella are essential for a comprehensive analysis of the Ca2+ redistribution that follows cell stimulation. Here we have studied changes in Ca2+ inside the endoplasmic reticulum, mitochondria, and nucleus by imaging aequorins targeted to these compartments in cells stimulated by brief depolarizing pulses with high K+ solutions. We find that Ca2+ entry through voltage-gated Ca2+ channels generates subplasmalemmal high [Ca2+]c domains adequate for triggering exocytosis. A smaller increase of [Ca2+]c is produced in the cell core, which is adequate for recruitment of the reserve pool of secretory vesicles to the plasma membrane. Most of the Ca2+ load is taken up by a mitochondrial pool, M1, closer to the plasma membrane; the increase of [Ca2+]M stimulates respiration in these mitochondria, providing local suppo...