Microstructural evolution in metals during helium and proton irradiations

Abstract
Recent investigations of helium-implanted and proton irradiated metals at medium temperatures (T≤100°C) have demonstrated the importance of high energy cascade effects for the microstructural evolution. They can effect the formation and the evolution of He densities in small bubbles formed by He implantation and are important also for the formation of periodic walls of defect clusters, a phenomenon observed under proton irradiations. Experimental results obtained by transmission electron microscopy and differential dilatometry for MeV irradiations of Cu and Ni are summarized and compared with observations after heavy-ion and neutron irradiations.