Principal neurons as local circuit neurons in the rat superior cervical ganglion: The synaptology of the neuronal processes revealed by intracellular injection of biocytin

Abstract
To analyze the local circuitry of the sympathetic ganglion, the synaptic relations of the neuronal processes of the principal neurons in the rat superior cervical ganglion were investigated by correlated light and electron microscopy combined with intracellular injection of biocytin. Intracellular iontophoresis of biocytin followed by avidin-biotinylated horseradish peroxidase cytochemistry allowed complete visualization of the neuronal processes of the principal neurons. The stained principal neurons have a single process (axon), which leaves the ganglion, and several intraganglionic processes (dendrites), some of which show specific terminal arborizations. Some terminals of the dendritic collaterals formed pericellular plexuses or intercellular glomerular plexuses. Electron microscopically, the dendrites and their collaterals contain numerous small vesicles. Synaptic membrane specializations were observed between the stained dendritic collaterals and unlabeled neurites. These may be both preganglionic axon terminals and processes of principal neurons. The likely direction of neurotransmission often could not be determined because of the bidirectional synaptic structures. Our findings show that the dendritic collaterals of principal neurons appear to make both post- and presynaptic contacts with both the principal neurons and the preganglionic axons. It is suggested that the principal neurons might participate in local circuits involving not only preganglionic axons but also neighboring principal neurons.