Abstract
A two-dimensional, unsteady, transonic, irrotational, inviscid flow of a perfect gas with constant specific heats is considered. The analysis involves perturbations from a uniform sonic isentropic flow. The governing perturbation potential equations are derived for various orders of the ratio of the characteristic time associated with a temporal flow disturbance to the time taken by a sonic disturbance to traverse the transonicregime. The case where this ratio is large compared to one is studied in detail. A similarity solution involving an arbitrary function of time is found and it is shown that this solution corresponds to unsteady chimel flows with either stationary or time-varying wall shapes. Numerical computations are presented showing the temporal changes in flow structure as a disturbance dies out exponentially for the following typical nozzle flows: simple accelerating (Meyer) flow and flow with supersonic pockets (Taylor and limiting Taylor flow).

This publication has 1 reference indexed in Scilit: