Effects of trimetazidine on pHi regulation in the rat isolated ventricular myocyte

Abstract
1. We have examined the effects of trimetazidine (TMZ) on intracellular pH (pHi) regulation in rat isolated ventricular myocytes. pHi was recorded ratiometrically by use of the pH-sensitive fluoroprobe, carboxy-SNARF-1 (carboxy-seminaphtorhodafluor). 2. Following an intracellular acid load (induced by 10 mM NH4Cl removal), pHi recovery in HEPES-buffered Tyrode solution was significantly slowed down upon application of 0.3 mM TMZ only when myocytes were pretreated for 5 h 30 min (slowing by approximately 50%; P < 0.01). This effect of TMZ on pHi recovery was shown to be not only time- but also dose-dependent with a large, quickly reversible, effect obtained with 1 mM TMZ applied for 2-3 h (slowing by approximately 64%; P < 0.001). This slowing of pHi recovery was also associated with a decrease of the NH4+ removal-induced acidification. 3. Relationship between intracellular intrinsic buffering power (beta i) and pHi was assessed in absence or presence of TMZ (0.3 mM or 1 mM). As expected, beta i increased roughly linearly with a decrease in pHi in all cases. However, both concentrations of TMZ significantly increased beta i (by approximately 55 and 65% at pHi 7.1, respectively). 4. When Na+/H+ exchange was inhibited by dimethyl amiloride (DMA; 40 microM), trimetazidine (1 mM) did not change the H+ flux estimated at pHi 7.1 (0.31 +/- 0.03 mequiv l-1 min-1, n = 5, control, versus 0.30 +/- 0.025 mequiv l-1 min-1, n = 5, TMZ), ruling out any effect of TMZ on background acid loading. 5. Acid efflux carried by Na+/H+ exchange was significantly decreased only when myocytes were pretreated with 1 mM TMZ, for 2-3 h (JeH = 2.86 +/- 0.38 mequiv l-1 min-1, n = 26, control, versus 1.66 +/- 0.26 mequiv l-1 min-1, n = 10, TMZ, estimated at pHi 7.1; P < 0.05). 6. In conclusion, the present work demonstrates that, following an intracellular acid load in HEPES-buffered medium, trimetazidine slows down pHi recovery in rat isolated ventricular myocytes, primarily through an increase of beta i. An effect on Na+/H+ exchange is also detected but only after long-term incubation of the myocytes with TMZ.