Radiofrequency Thermal Ablation

Abstract
OBJECTIVE. The purpose of this study was to perform a computer analysis of the size of the thermal injury created by overlapping multiple thermal ablation spheres.MATERIALS AND METHODS. A computer-assisted design system was used to create three-dimensional models of a spherical tumor, a spherical tissue volume consisting of the tumor plus a 1-cm tumor-free margin, and individual spherical ablations. These volumes were superimposed in real-time three-dimensional space in different geometric relationships. The effect of the size and geometric configuration of the ablation spheres was analyzed with regard to the ability to ablate the required volume of tissue (tumor plus margin) without leaving untreated areas or interstices.RESULTS. The single-ablation model showed that if a 360° 1-cm tumor-free margin is included around the tumor targeted for ablation, radiofrequency ablation devices producing 3-, 4-, and 5-cm ablation spheres can be used to treat 1-, 2-, and 3-cm tumors, respectively. The six-sphere model...