Abstract
Clades diversify in an ecological context, but most macroevolutionary models do not directly encapsulate ecological mechanisms that influence speciation and extinction. A data set of 245 chordate, arthropod, mollusk, and magnoliophyte phylogenies had a majority of clades that showed rapid lineage accumulation early with a slowing more recently, whereas a small but significant minority showed accelerated lineage accumulation in their recent histories. Previous analyses have demonstrated that macroevolutionary birth-death models can replicate the pattern of slowing lineage accumulation only by a strong decrease in speciation rate with increasing species richness and extinction rate held extremely low or absent. In contrast, the metacommunity model presented here could generate the full range of patterns seen in the real phylogenies by simply manipulating the degree of ecological differentiation of new species at the time of speciation. Specifically, the metacommunity model predicts that clades showing decelerating lineage accumulation rates are those that have diversified by ecological modes of speciation, whereas clades showing accelerating lineage accumulation rates are those that have diversified primarily by modes of speciation that generate little or no ecological diversification. A number of testable predictions that integrate data from molecular systematics, community ecology, and biogeography are also discussed.